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A Two-Parametric Family of Asymmetric Exclusion
Processes and Its Exact Solution
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A two-parameter family of asymmetric exclusion processes for particles on a
one-dimensional lattice is defined. The two parameters of the model control the
driving force and effect which we call pushing, due to the fact that particles can
push each other in this model. We show that this model is exactly solvable via
the coordinate Bethe Ansatz and show that its N-particle S-matrix is fac-
torizable. We also study the interplay of the above effects in determining various
steady state and dynamical characteristics of the system.

KEY WORDS: Asymmetric exclusion process; Bethe ansatz; master equation;
drift parameter; asymmetry parameter; diffusion rate.

1. INTRODUCTION

The asymmetric simple exclusion process (ASEP) is the simplest and most
studied model of interacting particle systems in one dimension (see refs. 1�5,
and reference therein). This model can be related via suitable mappings to
many different physical models ranging from interface growth(6, 7) to
problems of traffic flow.(8�11) In this paper, however we would like to look
at it only as a model for a collection of random walkers interacting with
each other by simple exclusion. Each particle hops with rate R(L) to it's
right (left) neighboring site if this site is empty, otherwise it stops. When
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the hoping rates R and L are equal, one deals with the symmetric exclusion
process. This case, models diffusion of particles on a one dimensional line
in the absence of a driving force. The other extreme case (i.e. L=0), is
usually called the totally asymmetric exclusion process (TASEP).

The asymmetric exclusion process has been extensively studied in the
past few years as a prototype of a one dimensional system far from equi-
librium for which some exact results can be obtained. Among the many
aspects of this problem which have been studied, one can mention the
mean field solution of the steady state and the phase structure, (12, 13) the
exact steady state of the open, (14) and closed chain, (15) the effect of
impurities, (16�18) exact calculation of some dynamical properties, (19) the
effect of different kinds of updatings, (20, 21) and finally the exact calculation
of conditional probabilities via the coordinate Bethe Ansatz.(22) In ref. 23
we considered the TASEP and added a new element into this process,
namely the possibility that a particle pushes the particles in front of it with
a rate depending on the number of these particles. Being interested in
exactly solvable models, we found that if a particle can push a collection
of n-adjacent particles in its immediate neighborhood whit a rate given by

rn=
1

1+(*�+)+ } } } +(*�+)n (1)

where 0�+=1&*�1, then the problem allows an exact solution via the
coordinate Bethe Ansatz. The fact that rn decreases with n is physically
natural, although its functional form may seem peculiar. This particular
form is dictated by our demand of the exact solvability of the model.
Varying the parameter + from 0 to 1, one can then smoothly interpolates
between the TASEP and the so called drop-push model.(24)

Remark. Here, by an exact solution we mean an exact determina-
tion of the time dependence of n-particle conditional probabilities on an
infinite lattice. We also show that the steady state of the system on a ring
is one in which all of the configurations have equal weights. The steady
state of the system on an open chain is not known at present. Incidentally,
the technique of matrix product ansatz does not work for this latter
problem since the Hamiltonian of the process is highly nonlocal.

In the present work we consider the partially asymmetric case and
study the combined effect of pushing and driving. Again we demand exact
solvability and follow the strategy of our previous work.(23) The basic
objects we are interested in are the probabilities P(x1 , x2 ,..., xN ;
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t | y1 , y2 ,..., yN) for finding at time t, particle 1 at point x1 , particle 2 at
point x2 ,..., given their initial positions at points y1 , y2 ,..., respectively. For
notational convenience, in the following we suppress the initial coordinates
whenever no confusion can arise. The physical region for the coordinates
is x1<x2< } } } <xN . If one wants to take into account a type of pushing
effect, one should write a large number of equations depending on which
and how many of the particles are adjacent to each other. The number of
cases and hence the number of equations grows rapidly as the number of
particles increases. The basic idea is to write one single equation sup-
plemented by a particular boundary condition and to see what kind of
pushing effect emerges. The master equation is

�
�t

P(x1 , x2 ,..., xN ; t)

=R[P(x1&1, x2 ,..., xN ; t)+ } } } +P(x1 , x2 ,..., xN&1; t)]

+L[P(x1+1, x2 ,..., xN ; t)+ } } } +P(x1 , x2 ,..., xN+1; t)]

&NP(x1 , x2 ,..., xN ; t) (2)

In the following we re-scale time so that R+L=1. We assume that this
equation holds in the whole physical region. When any of the coordinates
of the left hand side are adjacent (say xi+1=xi+1), points on the bound-
ary of the physical region appear on the right hand side of (2). We fix the
value of these terms by the following boundary condition:

P(x, x; t)=*P(x, x+1; t)++P(x&1, x; t) (3)

where for simplicity we have suppressed all the other coordinates. This idea
is most apparent in sectors of low particle number. For example, in the two
particle sector, combination of (2) and (3) yields for adjacent particles.

�
�t

P(x, x+1)

=R[P(x&1, x+1)++P(x&1, x)&(1++) P(x, x+1)]

+L[P(x, x+2)+*P(x+1, x+2)&(1+*) P(x, x+1)] (4)

which means that a particle hops freely to the right and left with rates R
and L and pushes its neighboring particle to the right and left with rates
R+ and L*, respectively. We will show that in the general case, Eqs. (2) and
(3) imply that the following processes:
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1 1 } } } 1

n+1

< � < 1 1 } } } 1

n+1

(5)

< 1 1 } } } 1

n+1

� 1 1 } } } 1

n+1

< (6)

occur respectively with rates rn and ln given by

rn=R
1

1+*�++ } } } +(*�+)n (7)

and

ln=L
1

1++�*+ } } } +(+�*)n (8)

Remark. Interchanging particles and holes, this model can be seen
to be equivalent to a model in which each particle does not only hops to
its immediate neighboring sites but to any other vacant site, with rates
depending on the hopping distance; i.e., in the equivalent model the follow-
ing processes occur with rates rn and ln , respectively

< < } } } <

n+1

1 � 1 < < } } } <

n+1

(9)

1 < < } } } <

n+1

� < < } } } <

n+1

1 (10)

The basic parameters of the model are R=1&L, and +=1&*. As we
increase + from 0 to 1, the effect of pushing to the right increases and that
to the left decreases. For single particles the hopping rates to the right and
left are still R and L respectively. Thus the driving is controlled by R or L
and the pushing by + or *.

A few special cases are worth mentioning:
When +=*, the pushing effect to the right an left are equal and the

rates are

rn=R
1

n+1
ln=L

1
n+1

(11)

In this case, the asymmetry is controlled only by driving.
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When +=1, then we have maximum pushing to the right and no
pushing to the left. The rates are

rn=R, l0=L, ln>0=0

Single particles can hop to the left, but can not push other particles to the
left.

When L=0, particles hop to the right only, and by varying + form 0
to 1 we interpolate between TASEP and the drop-push model.(24) Another
way to understand the difference of the two sources of asymmetry in this
problem is to note that the effect of driving can at least at long times be
completely removed by going to an appropriate frame of reference while
that of pushing can not. To see this, consider the transformation

xi � x$i :=xi&Vt (12)

which is a Galilean boost. Actually, this is not an allowed transformation
of our problem, since the xi 's are integers, whereas t is real. However, if the
probability distribution is sufficiently slowly varying (e.g., at long times),
then one can define a probability density function with real variables. The
master equation for this function is (to lowest order)

�P
�t

=&(R&L) :
i

�P
�xi

+
1
2

:
i

�2P
�x2

i

(13)

In this case, the Galilean boost becomes a symmetry of the space-time
being considered. Going to a reference frame moving with the velocity
V=R&L, one obtains

�P
�t

=
1
2

:
i

�2P
�x$2

i

(14)

The asymmetry due to driving has been removed. However, the asymmetry
due to pushing remains intact since the boundary condition does not
change under this transformation. The rest of this paper is devoted to the
technical details and elaboration of the above results. In Section 2 we prove
that equations (2) and (3) actually give the above mentioned process.
In Section 3 we apply the coordinate Bethe ansatz and show that for this
highly nonlocal process the N-particle S matrix is still factorizable. We also
find the integral representation of the N-particle conditional probability
distributions. In Section 4 we show that in the two limiting cases +=1 and
*=1, the conditional probabilities can be expressed in closed form as
N_N determinants. Section 5 is devoted to the mean field solution and
discussion of the current density relation. In Section 6 we calculate the drift
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and the diffusion rates for the two particle sector and compare our results
with those of the ordinary partially ASEP.(22) Finally in Section 7, we dis-
cuss the qualitative picture of the phases for open systems and also discuss
the relation with ordinary ASEP in other updating schemes.

2. THE MASTER EQUATION AND THE PROCESS

The master equation is (2) supplemented by the boundary condi-
tion (3). For sectors of low number of particles (e.g., N=2, 3), one can
repeatedly use (3) to find the rates. For general sectors we use the following
lemma.

Lemma. The boundary condition (3) implies

P(x, x+1,..., x+n&1, x+n, x+n)

=(1&rn+1) P(x, x+1,..., x+n&1, x+n, x+n+1)

+rn+1 P(x&1, x..., x+n&2, x+n&1, x+n) (15)

P(x, x, x+1,..., x+n&1, x+n)

=(1&ln+1) P(x&1, x, x+1,..., x+n&1, x+n, x+n)

+ln+1P(x, x+1, x+2,..., x+n&1, x+n, x+n+1) (16)

where rn and ln are given in (7) and (8).
The proof of this lemma is almost the same as that given in ref. 23 and

will not be repeated here. This lemma in fact states how to resolve the
singularity in coordinates of a cluster of n adjacent particles with that of a
single particle from right and left respectively. Consider now the master
equation for a collection of n adjacent particles.

�
�t

P(x, x+1,..., x+n&1)

=R _ :
n&1

i=0

riP(x&1, x,..., x+i&2, x+i&1,

x+i+1,..., x+n&1)&\ :
n&1

i=0

ri+ P(x, x+1,..., x+n&1)&
+L _ :

n&1

i=0

ln&1&iP(x, x+1,..., x+i&1, x+i+1,

x+i+2,..., x+n)&\ :
n&1

i=0

li+ P(x, x+1,..., x+n&1)& (17)
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It is now clear that the master Eq. (2) and the boundary condition (3)
imply the processes (5)�(8).

3. THE BETHE ANSATZ SOLUTION

3.1. The Case of an Infinite Lattice

The Bethe-ansatz solution to the master Eq. (2) is

P(x1 ,..., xN ; t)=eEt9(x1 ,..., xN) (18)

where

9(x1 ,..., xN)=:
_

A_ei_(p) } x (19)

Here x and p denote n-tuples of coordinates and momenta, respectively, the
summation runs over the elements of the permutation group, and A_ 's are
coefficients to be determined from the boundary condition (3). Inserting
(18) in (2), we have

R :
N

j=1

9(x1 ,..., xj&1,..., xN)+L :
N

j=1

9(x1 ,..., xj+1,..., xN)

=(N+E ) 9(x1 ,..., xN) (20)

or

:
_

A_ei_(p) } x _R :
j

e&i_( pj)+L :
j

ei_( pj)&
=(N+E ) 9(x1 ,..., xN) (21)

From this, one obtains (as one can remove _ from the summations in the
parenthesis)

E=:
j

E( pj ) (22)

where

E( pj )=Re&ipj+Le ipj&1 (23)

The next step is to determine the coefficients A_ , so that the eigenfunction
9 satisfies the boundary condition (3). It is seen that nothing from the
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master equation enters this boundary condition. So the solution to this
boundary condition is just what was found in ref. 23, that is

A__i
=S(_( pi ), _( pi+1)) A_ (24)

where _ is an arbitrary element of the permutation group, and _i is the
generator which only interchanges pi and p i+1 . The elements of the two-
particle scattering matrix,

Sjk :=S( pj , pk)=&
1&*eipk&+e&ipj

1&*eipj&+e&ipk
(25)

are thus sufficient to calculate the scattering matrix in the general N-par-
ticle sector, and the latter factorizes in terms of the former. As the scatter-
ing matrix is just that obtained in ref. 23, the same reasoning shows that
there are no bound states. So we can write the conditional probability as

P(x; t | y; 0)=| `
N

j=1

dpj

2?
eE(p) t&ip } y9(x, p) (26)

where the normalization of 9 is chosen so that the coefficient of eip } x in 9
is equal to unity. Integrations run over 0�pj�2?, and te poles of the scat-
tering matrix are shifted from the integration region through the prescrip-
tion

S( pk , pm) � S( pk+i=, pm), k<m (27)

This ensures that in the physical region (xj<xj+1 , y j< yj+1) we have

P(x; 0 | y; 0)=`
j

$xj , yj
(28)

Equation (26) is an integral representation for the conditional probabilities.
More explicit information is obtained after calculating the integrals. For
example in the two particle sector Eq. (26) is written as

P(x1 , x2 ; t | y1 , y2 ; 0)

=|
d2p
4?2 e[E( p1)+E( p2)] t&i( p1 y1+ p2 y2)

_{ei( p1x1+ p2x2)&
1&*eip2&+e&ip1

1+=&*eip1&+e&ip2
ei( p1x2+ p2x1)= (29)
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Using the variables ! :=eip1 and ' :=e&ip2, a contour integration yields

P(x1 , x2 ; t | y1 , y2 ; 0)

=e&2t :
m, n {

(Lt)m+n+ y2&x2 (Rt)m+n+x1& y1

n !(n+ y2&x2)! m !(m+x1& y1)!

& :
p, q \

p+q
p + * p+q (Lt)m+n+ y2&x1+q (Rt)m+n+x2& y1+ p

n !(n+ y2&x1+q)! m !(m+x2& y1+ p)!

__1&
*(n+ y2&x1+q)

Lt
&

+(m+x2& y1+ p)
Rt &= (30)

Here all of the summations run from zero to infinity. A simple calculation
shows that in the limit L=0, the result of ref. 23 is obtained.

3.2. The Case of Periodic Lattice

On an infinite lattice, the set of momenta of the eigenfunctions of the
Hamiltonian are continuous. On a finite lattice, however, this set is dis-
crete. To obtain this set, consider a lattice of M sites, on which N particles
live. Now, another boundary condition should be added(25)

9(x1 , x2 ,..., xN)=9(x2 , x3 ,..., xN , x1+M ) (31)

This means that one cannot unambiguously define the first particle: one
can interpret the first particle as the last one, provided its coordinate in
enhanced by M, the period of the lattice. Applying the boundary condi-
tion (31) on the eigenfunction (19), we have

:
_

A_ei[_( p1) x1+_( p2) x2+ } } } +_( pN ) xN]

=:
_

A_ei[_( p1) x2+_( p2) x3+ } } } +_( pN )(x1+M )]

=:
_

A__0
ei[_( p2) x2+_( p3) x3+ } } } +_( p1)(x1+M )] (32)

where

_0( p1 , p2 ,..., pN) :=( p2 , p3 ,..., pN , p1) (33)

This yields

A_=A__0
eiM_( p1) (34)
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But,

_0=_1 } } } _N&1 (35)

So, using (24),

A__0
=A__1 } } } _N&1

=A_S[__1 } } } _N&2( pN&1), __1 } } } _N&2( pN)] } } } S[_( p1), _( p2)]

=A_S[_( p1), _( pN)] S[_( p1), _( pN&1)] } } } S[_( p1), _( p2)] (36)

Combining this with (34), we arrive at

e&iM_( p1)=S[_( p1), _( pN)] } } } S[_( p1), _( p2)] (37)

which can be written as

e&iMpk= `
j{k

S( pk , pj ) (38)

These are the Bethe equations of the system, the solution of which provides
the allowed set of discrete momenta. Note that the driving parameter enters
only the energy equation, as in (23), and the pushing parameter enters only
the Bethe equations. Denoting e&ipk by zk , Eqs. (38) can be rewritten as

zM
k = `

j{k

*z&1
j ++zk&1

1&*z&1
k &+zj

(39)

This system of equations have a symmetry, namely it is invariant under
z � z&1, * � +. This means that if the set z: :=[z:

k] are the quantized
momenta for the (*, +) system, then the set |: :=[(z:

k)&1] are the quan-
tized momenta for the (+, *) system. Thus if we know the spectrum of the
former system (see Eqs. (22) and (23)):

E:=:
j

(Rz (:)
j +L(z (:)

j )&1&1) (40)

then the spectrum of the latter system is also known

E$:=:
j

(R(z (:)
j )&1+L(z (:)

j )&1) (41)

In particular this means that part of the analysis of the spectrum of
ordinary ASEP (L=+=0) which has been done by Gwa and Sphon, (25)

can be applied to the drop-push model.(24)
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4. CLOSED FORM OF THE CONDITIONAL PROBABILITIES
IN THE LIMITING CASES *=1 AND +=1

In the special cases *=0, 1, one can use a determinant ansatz for the
conditional probabilities:(22, 23)

P(x; t | y; 0)=e&Nt det[G(x; t | y; 0)] (42)

where G is an N_N matrix with elements

Gij (x; t | y; 0)= gi& j (xi& yj ; t) (43)

Inserting (42) in (2), one obtains

�
�t

Gij (x; t)=RG ij (x&1; t)+LGij (x+1; t) (44)

The equations obtained by the boundary condition (3) (for =0, 1) are

{gk&1(x; t)= gk&1(x&1; t)+;gk(x; t),
gk+1(x; t)= gk+1(x+1; t)+;gk(x; t),

*=0
*=1

(45)

Writing (44) in the form

g* k(x; t)=Rgk(x&1; t)+Lgk(x+1; t) (46)

and introducing the z-transform

g~ k(z, t) :=:
x

zxgk(x; t) (47)

we obtain from (45) the following

{
g~ k&1(z, t)=

;
1&z

g~ k(z, t),

g~ k+1(z, t)=
;

1&1�z
g~ k(z, t),

*=0

*=1
(48)

while (46) yields

g~ k(z, t)=e(Rz+L�z) tg~ k(z, 0) (49)
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We also note that g~ k(z, t) is the z-transform of the one-particle sector prob-
ability; so

g~ 0(z, 0)=:
x

zx$x, 0=1 (50)

Combining (48), (49), and (50), we arrive at

g~ k(z, t)= {
e(Rz+L�z) t \ ;

1&z+
&k

,

e(Rz+L�z) t \ ;
1&1�z+

k

,

*=0

*=1
(51)

The parameter ; drops from the determinant, so that one can set it equal
to an arbitrary number; we set it equal to unity. From this, one obtains

gk(x; t)= :
�

m, n=0
n&m+x�0

(&1)n&m+x \ k
n&m+x+

(Rt)m (Lt)n

m ! n!
, *=0 (52)

and

gk(x; t)= :
�

m, n=0
n&m&x�0

(&1)n&m&x \ &k
n&m&x+

(Lt)m (Rt)n

m ! n!
, *=1 (53)

Note that

g (*=1, R, L)
k (x; t)= g (*=0, L, R)

&k (&x; t) (54)

which is a special case of the symmetry under reflection. By this, we mean
that the system of equations (2) and (3) is invariant under the following
transformations:

xi � &xN+1&i , R � L, * � +

5. STEADY STATE OF THE SYSTEM ON A RING

In this section we consider a ring of N sites on which M particles are
hopping. The steady state of this system is the one in which all the con-
figurations have equal weights. Thus all the steady state probabilities
P(x1 , x2 ,...xM) are equal to a constant. Stationarity of this measure is
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proved by noting that P(x1 , x2 ,...xM)=constant, satisfies both the master
Eq. (2) and the boundary condition (3). Uniqueness of the measure is
ensured by connectivity of the process, i.e. the fact that every configuration
can be reached from any other by a sequence of transitions.(26) In this state
one can calculate all the correlation functions by simple combinatorics. If
nk is the random variable at site k which is 1 if it is occupied and 0 if it
is vacant, then it is well know(15) that

(nj) =
M
N

, (njnk) =
M(M&1)
N(N&1)

(njnkn l)=
M(M&1)(M&2)
N(N&1)(N&2)

, etc. (55)

In the thermodynamic limit, when M � � and N � � with M�N=\, this
steady state approaches the uncorrelated steady state given by the mean
field solution. What we want to do in this section is to find the current
density relation for such a steady state. In general one can find the equa-
tion for the rate of change of the average density at site k, either by going
to the Hamiltonian formalism and using the equations d�dt(nk) =
([nk , H]) , or by just looking at the process and determining the various
ways in which this density decreases or increases. We follow this second
approach which is more transparent and intuitive. The rate of change of
density of particles can also be written as a continuity equation, i.e.
d�dt(nk)=Jk&1&Jk , where Jk is the current through site k. This current
is the algebraic sum of a positive and a negative current

Jk :=RJ +
k &LJ &

k (56)

where J +
k and J &

k are due to the hopping of particles to the right and to
the left respectively. Due to the pushing effect, both of these currents are
non-local. The explicit expression of J +

k and J &
k are:

J +
k =r0(nk(1&nk+1))+r1((nk&1nk(1&nk+1))+(nknk+1(1&nk+2)) )

+r2((nk&2nk&1nk(1&nk+1)) +(nk&1nknk+1(1&nk+2))

+(nknk+1nk+2(1&nk+3)) )+ } } } (57)

and

J &
k =l0( (1&nk) nk+1)+l1(( (1&nk) nk+1 nk+2)+( (1&nk&1) nk nk+1) )

+l2(( (1&nk) nk+1nk+2nk+3)+( (1&nk&1) nknk+1nk+2)

+( (1&nk&2) nk&1nk nk+1)) )+ } } } (58)
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A typical term like (nk&1nk(1&nk+1)) in the expression of J +
k , is in fact

the probability of the configuration 110 on sites k&1, k, and k+1, respec-
tively. We know from (5) and (7) that this configuration changes with rate
r1 to 011 on the same sites, hence this term contributes to the current J +

k .
A similar interpretation is true for other term (nk nk+1(1&nk+2)), etc.
In the uncorrelated steady state, the above currents are calculated to be

J+ :=\(1&\) :
�

n=0

(n+1) \n

1+*�++ } } } +(*�+)n (59)

and

J& :=\(1&\) :
�

n=0

(n+1) \n

1++�*+ } } } +(+�*)n (60)

from which one obtains:

\(1&\) \1+
2+
*

\++o\+
*+

2

,
+
*

<<1

J+={\,
+
*

=1 (61)

\
1&\ \1+

*
+

\(\&2)++o \ *
++

2

,
+
*

>>1

and

\
1&\ \1+

+
*

\(\&2)++o \+
*+

2

,
+
*

<<1

J&={\,
+
*

=1 (62)

\(1&\) \1+
2*
+

\++o \ *
++

2 +
*

>>1

Consider J+: It is seen that as far as the pushing effect to the right is small
(+�*<<1), the standard mean field current of the ASEP gets only correc-
tions of the order +�*. For medium pushing, when +�*r1, the current is
exactly equal to the density and the interesting point is that contrary to the
case of ASEP, even when the lattice is filled with particles (\=1), there is
a nonzero current due to pushing. At very strong pushing (+�*>>1), the
current even diverges when the lattice is filled. It is now instructive to
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consider only the leading terms of the total current Jk in different regimes.
In the steady state, this current is independent of the site number k and
hence is denoted by J. We find from (61) and (62) the following

\ \R(1&\)&
L

1&\++o \+
*+ ,

+
*

<<1

J={ (R&L) \,
+
*

=1 (63)

\ \ R
1&\

&L(1&\)++o \ *
++ ,

+
*

>>1

Remark. Note that our model incorporates only the totally ASEP
as a special case. Therefore when L{0, the above results should not coin-
cide with those of the partially ASEP in the limiting case +=0.

Consider the case +�*<<1, where we have strong pushing to the left
and weak pushing to the right. It is seen that for L>R the current is
always negative, which is expectable on physical grounds. However, for
L<R, when the driving force is to the right, the two effects act in opposite
directions. The current is positive as long as \<\c :=1&- L�R. At \=\c

the current vanishes and for \>\c , the pushing effect takes over and the
current becomes negative.

6. DRIFT AND DIFFUSION RATES IN THE TWO PARTICLE
SECTORS

In this section we want to study the interplay of driving and pushing
in the behaviour of two important dynamical quantities, namely the drift
and the diffusion rates. More generally, we study the long time behaviour
of the quantities d�dt(X) and d�dt((X 2)&(X) 2). Our starting point is the
exact calculation of conditional probability of the two particles being a
distance x apart, given their initial separation y. Denoted by Pr(x; t | y; 0),
it is given as:

Pr(x; t | y; 0)= :
�

x2=&�

P(x2&x, x2 ; t | 0, y; 0)

=|
d2p
4?2 eEt&ip } y :

x2

ei( p1+ p2) x2[e&ip1x+S( p1 , p2) e&ip2x]

=|
dp
2?

e[E( p)+E(&p)] t+ip( y)(e&ipx+e&ipeipx) (64)
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where we have used:

S( p, &p)=e&ip (65)

From these we arrive at

Pr(x; t | y; 0)=e&2t[Iy&x(2t)+Iy+x&1(2t)] (66)

where In is the modified Bessel function of order n with the integral
representation

In(u)=|
dp
2?

einp+u cos p (67)

It is interesting to note that this probability is independent of the asym-
metry- and drift-parameters. Another way to see this result, is to derive the
equation of evolution for Pr . To do so, begin from the master Eq. (2) for
two particles. Using the definition of Pr(x; t | y; 0) now abbreviated to
Pr(x), we arrive at

P4 r(x)=Pr(x&1)+Pr(x+1)&2Pr(x) (68)

The boundary condition (3) is transformed into

Pr(0)=Pr(1) (69)

It is seen that the driving and the pushing parameters are absent in this
equation. The physical explanation for the absence of + or * is that, when
two particles push each other they do not change their inter-particle dis-
tance. This distance increases by one unit with rate R+L (particle 2 hop-
ing to the right or particle 1 to the left), and decreases by one unit with the
same rate (particle 2 hoping to the left or particle 1 to the right), and since
R+L has been rescaled to unity, the driving parameters do not appear in
these equations either. We should stress that this is not the case in more
than two-particle sectors and the probabilities for relative distance in these
sectors do indeed depend on the above parameters. The next quantities we
calculate are the average velocities of particle 1 and particle 2. Note that
particles can not overtake each other and that they keep their initial order
at all times. We have:

(xi) :=:
x

xPi (x) (70)
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where Pi (x) is the probability of finding particle i at site x. The master
equation for these probabilities are obtained from (2) and (3), using the
definitions:

P1(x) := :
�

x2=x+1

P(x, x2) (71)

and

P2(x) := :
x&1

x1=&�

P(x1 , x) (72)

This calculation finally leads to the following equations

P4 1(x)=R[P1(x&1)&P(x&1, x)++P(x&1, x)]&(x � x+1)

+L[P1(x+1)+*P(x+1, x+2)]&(x � x&1) (73)

and

P4 2(x)=R[P2(x&1)++P(x&2, x&1)]&(x � x+1)

+L[P2(x+1)&P(x, x+1)+*P(x, x+1)]&(x � x&1) (74)

We have written these equations in this unsimplified form in order to con-
vey their simple physical meaning. In fact they can also be obtained by
intuitive reasoning. Consider for example Eq. (73). The first two terms in
the curly bracket of the first line are due to particle 1 at site x&1 hopping
to an already vacant site at x and the third term is due to particle 1 at site
x1 hopping to site x and pushing the already present particle 2 at this site
to the right. Other terms have similar meaning. One now obtains from (70)
and (73, 74) the following

d(x1)
dt

=R&L&*Pr(1) (75)

and

d(x2)
dt

=R&L++Pr(1) (76)

One can even derive these equations from the beginning by physical
reasoning without using the master equation. For example we know that
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the hopping rate of particle 1 to the right is normally R unless it is one site
behind particle 2 where its hopping rate will be R+. these two terms can be
combined to give a positive contribution R+(R+&R) Pr(1) to the average
velocity of particle 1. On the other hand its hopping rate to the left is nor-
mally L unless particle 2 is exactly one site to its right, where its hopping
rate becomes L+L*. These two terms are then combined to give a
negative contribution &L&L*Pr(1) to the average velocity. Adding these,
one obtains (75). The same kind of reasoning can give (76). Using the
definitions

(r) :=(x2) &(x1) (X) := 1
2 ((x1) +(x2) ) (77)

we find

d(r)
dt

=Pr(1) (78)

and

d(X)
dt

=R&L+
+&*

2
Pr(1)=R&L+

+&*
2

d(r)
dt

(79)

From these, one obtains

(X) =(X) 0+(R&L) t+
+&*

2
((r)&(r) 0) (80)

where the subscript 0 refers to initial conditions. From (66), and using the
asymptotic behaviour of the modified Bessel functions, one can obtain the
asymptotic behaviour of these expectation values. We have

Pr(1)=
1

- ?t
+O(t&3�2) (81)

Then, we obtain

(r) =C+2 � t
?

+O(t&1�2) (82)

where C is a constant depending on the initial conditions. So,

(X)=(X) 0+(R&L) t+
+&*

2 \C+2 � t
?

&(r) 0++O(t&1�2) (83)
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At long times we have:

d(X)
dt

=R&L+
+&*

2 - ?t
+O(t&3�2) (84)

It is seen that to leading order the drift rate defined as V :=(d�dt)(X) is
only controlled by driving, and pushing has only a sub-leading effect. To
calculate the diffusion rate we proceed as follows:

d((X 2) &(X) 2)
dt

=
d
dt \

1
2

(x2
1)+

1
2

(x2
2)+&

d((X) 2)
dt

(85)

where

(x2
i ) =:

x

x2P i (x), i=1, 2 (86)

Using (73) and (74), we arrive at

d(x2
1)

dt
=1+2(R&L)(x1)+*(L&R) Pr(1)&2* :

x

xP(x, x+1) (87)

and

d(x2
2)

dt
=1+2(R&L)(x2)++(R&L) Pr(1)+2+ :

x

xP(x, x+1) (88)

From these we obtain

d((X 2)&(X) 2)
dt

=1&(+&*)(X) Pr(1)+
1+(+&*)(R&L)

2
Pr(1)

+
+&*

2
:
x

(2x&1) P(x&1, x) (89)

The value of the quantity �x (2x&1) P(x&1, x) is calculated in the
appendix. Inserting its value in the above formula, using the asymptotic
form of the modified Bessel function, one obtains

2 := lim
t � �

d((X 2) &(X) 2)
dt

=1+(*&+)2 \1
2

&
1
?+ (90)
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We see that pushing has a leading effect on the diffusion rate. The physical
explanation behind this is that although the average distance between the
particles grows with time as t1�2 (see (82)), the width of the probability dis-
tribution (wave packet) of each particle increases also with rate t1�2, thus
the wave packets always overlap and there is always a finite probability
that the particles push each other.

7. DISCUSSION AND SUMMARY

We have defined a generalized asymmetric exclusion process with
random sequential updating in which particles besides hoping randomly to
the left and right can also push their neighboring particles with rates
depending on the number of these particles. We have shown that his model,
although governed by a very non-local Hamiltonian of the spin chain type,
is exactly solvable via the coordinate Bethe ansatz. (For the type of the
Hamiltonian see ref. 23). throughout the paper we have tried to study the
interplay between the two sources of asymmetry, the one due to driving
and the one due to pushing. Due to the pushing effect, in our model,
cluster of particles can also hop to right and left. This is similar to what
happens in sequential updating schemes, (20, 21) where in one complete
updating of the lattice, clusters of particles move. However, we remark that
here we have this effect in continuous time and not discrete time. Specially,
in sequential updating scheme, when the total updating operator is the
product of local updating operators, the probability of hopping of clusters
in one complete update, turns out to be a power of the hopping rates of
single particles while in our model this is not so. That is why our
Hamiltonian is very non-local.

The fact that despite this non-locality the system has an exact solution
and its S-matrix is factorizable is interesting. What remains to be done for
this model is to study its steady state (particularly int he totally asymmetric
case L=0) and its phase structure on open systems when particles are
injected and extracted at the open ends, to see how the simple phase
diagram of the ASEP will be modified due to pushing. Again, due to the
non-locality of the Hamiltonian of the process, the conventional technique
of Matrix Product Ansatz can not be applied to this problem. Qualitative
pictures may be obtained along the work of ref. 27. However, one should
first decide as to how to add boundary terms to this process, that is if par-
ticle arrive only at the already vacant boundary site or else, they can also
push a cluster of particles of arbitrary size, already present there. If this is
so, then there will be no longer a genuine difference between the boundary
terms and the bulk. We believe that, due to these complications and the
nonlocal character of the process, this problem deserves a separate study.
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APPENDIX

To calculate the quantity �x (2x&1) P(x&1, x) needed in Section 6,
we proceed as follows:

:
x

(2x&1) P(x&1, x)

=|
d2p
4?2i

eEt&ip } y _\ �
�p1

+
�

�p2 + :
x

ei( p1+ p2) x&ip1

+S12 \ �
�p1

+
�

�p2+ :
x

ei( p1+ p2) x&ip2&
=|

id2p
2?

$( p1+ p2) _e&ip1 \ �
�p1

+
�

�p2+ eEt&ip } y

+e&ip2 \ �
�p1

+
�

�p2+ (S12eEt&ip } y)&
=e&2t {( y1+ y2)[Iy(2t)+Iy&1(2t)]

+t(R&L)[Iy+1(2t)+Iy(2t)+Iy&1(2t)+Iy&2(2t)]

+(+&*) :
�

k=0

[Iy+k(2t)+Iy+k+1(2t)]= (91)

Using the identity

:
�

n=&�

In(2t)=e2t (92)

we arrive at

:
x

(2x&1) P(x&1, x)

=e&2t[( y1+ y2)[Iy(2t)+Iy&1(2t)]

+t(R&L)[Iy+1(2t)+Iy(2t)+Iy&1(2t)+Iy&2(2t)]]

+(+&*) {1&e&2t :
y&1

n=0

[In(2t)+In+1(2t)]= (93)

393A Two-Parametric Family of Asymmetric Exclusion Processes



ACKNOWLEDGMENTS

M. Alimohammadi would like to thank the research council of the
University of Tehran and Institute for Studies in Theoretical Physics and
Mathematics, for partial financial support.

REFERENCES

1. T. M. Liggett, Interacting Particle Systems (Springer, 1985).
2. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, 1991).
3. D. Dhar, Phase Transition 9:51 (1987).
4. B. Derrida, Phys. Rep. 301:65 (1998).
5. B. Derrida and M. R. Evans, in Non-Equilibrium Statistical Mechanics in one Dimension,

V. Privman, ed. (Cambridge University Press, 1997), p. 277.
6. T. Halpin-Healy and Y. C. Zhang, Phys. Rep. 254:215 (1995).
7. J. Krug and H. Spohn, in Solids far from Equilibrium, C. Godreche, ed. (Cambridge

University Press, Cambridge, 1991).
8. M. Schreckenberg, A. Schadschneider, K. Nagel, and N. Ito, Phys. Rev. E 51:2339 (1995).
9. O. Biham, A. A. Middelton, and D. Levine, Phys. Rev. A 46:6124 (1992).

10. K. Nagel, Phys. Rev. E 54:4655 (1996).
11. F. Spitzer, Adv. Math. 5:246 (1970).
12. G. Schu� tz and E. Domany, J. Stat. Phys. 72:277 (1993).
13. B. Derrida, E. Domany, and D. Mukamel, J. Stat. Phys. 69:667 (1992).
14. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, J. Phys. A: Math. Gen. 26:1493

(1993).
15. P. Meakin, P. Ramanlal, L. Sander, and R. C. Ball, Phys. Rev. A 34:5091 (1986).
16. S. A. Janowsky and J. L. Lebowitz, J. Stat. Phys. 77:35 (1994), Phys. Rev. A 45:618

(1992).
17. B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, Europhys. Lett. 22:651

(1993); J. Stat. Phys. 73:813 (1993).
18. H. W. Lee, V. Popkov, and D. Kim, J. Phys. A: Math. Gen. 30:8497 (1997).
19. B. Derrida and K. Mallick, J. Phys. A: Math. Gen. 30:1031 (1997); B. Derrida, M. R.

Evans, and K. Mallick, J. Stat. Phys. 79:833 (1995).
20. N. Rajewsky and M. Schreckenberg, Physica A 245:139 (1997); N. Rajewsky, L. Santen,

A. Schadschneider, and M. Schreckenberg, J. Stat. Phys. 92:151 (1998).
21. H. Hinrichsen, J. Phys. A: Math. Gen. 29:3659 (1996).
22. G. M. Schu� tz, J. Stat. Phys. 88:427 (1997).
23. M. Alimohammadi, V. Karimipour, and M. Khorrami, Phys. Rev. E 57:6370 (1998).
24. G. M. Schu� tz, R. Ramaswamy, and M. Barma, J. Phys. A: Math. Gen. 29:837 (1996).
25. L. H. Gwa and H. Spohn, Phys. Rev. A 46:844 (1992).
26. N. G. van Kampen, in Stochastic Processes in Physics and Chemistry (North-Holland,

Amsterdam, 1981).
27. A. B. Kolomeisky, G. M. Schu� tz, E. B. Kolomeisky, and J. P. Straley, J. Phys. A: Math.

Gen. 31:6911 (1998).

394 Alimohammadi et al.


